Metabolome analysis revealed increase in S-methylcysteine and phosphatidylisopropanolamine synthesis upon L-cysteine deprivation in the anaerobic protozoan parasite Entamoeba histolytica.

نویسندگان

  • Afzal Husain
  • Dan Sato
  • Ghulam Jeelani
  • Fumika Mi-ichi
  • Vahab Ali
  • Makoto Suematsu
  • Tomoyoshi Soga
  • Tomoyoshi Nozaki
چکیده

L-cysteine is ubiquitous in all living organisms and is involved in a variety of functions, including the synthesis of iron-sulfur clusters and glutathione and the regulation of the structure, stability, and catalysis of proteins. In the protozoan parasite Entamoeba histolytica, the causative agent of amebiasis, L-cysteine plays an essential role in proliferation, adherence, and defense against oxidative stress; however, the essentiality of this amino acid in the pathways it regulates is not well understood. In the present study, we applied capillary electrophoresis time-of-flight mass spectrometry to quantitate charged metabolites modulated in response to L-cysteine deprivation in E. histolytica, which was selected as a model for examining the biological roles of L-cysteine. L-cysteine deprivation had profound effects on glycolysis, amino acid, and phospholipid metabolism, with sharp decreases in the levels of L-cysteine, L-cystine, and S-adenosylmethionine and a dramatic accumulation of O-acetylserine and S-methylcysteine. We further demonstrated that S-methylcysteine is synthesized from methanethiol and O-acetylserine by cysteine synthase, which was previously considered to be involved in sulfur-assimilatory L-cysteine biosynthesis. In addition, L-cysteine depletion repressed glycolysis and energy generation, as it reduced acetyl-CoA, ethanol, and the major nucleotide di- and triphosphates, and led to the accumulation of glycolytic intermediates. Interestingly, L-cysteine depletion increased the synthesis of isopropanolamine and phosphatidylisopropanolamine, and it was confirmed that their increment was not a result of oxidative stress but was a specific response to L-cysteine depletion. We also identified a pathway in which isopropanolamine is synthesized from methylglyoxal via aminoacetone. To date, this study represents the first case where L-cysteine deprivation leads to drastic changes in core metabolic pathways, including energy, amino acid, and phospholipid metabolism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mass Spectrometric Analysis of l-Cysteine Metabolism: Physiological Role and Fate of l-Cysteine in the Enteric Protozoan Parasite Entamoeba histolytica

UNLABELLED L-cysteine is essential for virtually all living organisms, from bacteria to higher eukaryotes. Besides having a role in the synthesis of virtually all proteins and of taurine, cysteamine, glutathione, and other redox-regulating proteins, L-cysteine has important functions under anaerobic/microaerophilic conditions. In anaerobic or microaerophilic protozoan parasites, such as Entamoe...

متن کامل

A detoxifying oxygen reductase in the anaerobic protozoan Entamoeba histolytica.

We report the characterization of a bacterial-type oxygen reductase abundant in the cytoplasm of the anaerobic protozoan parasite Entamoeba histolytica. Upon host infection, E. histolytica is confronted with various oxygen tensions in the host intestine, as well as increased reactive oxygen and nitrogen species at the site of local tissue inflammation. Resistance to oxygen-derived stress thus p...

متن کامل

Behavior of DNA-lacking mitochondria in Entamoeba histolytica revealed by organelle transplant

The anaerobic protozoan parasite Entamoeba histolytica has mitosomes that are mitochondria lacking some canonical functions and organelle DNA. Mitosomes play an important role in the life cycle of the parasite. The distribution of proteins in mitosomes is not uniform, and how mitosomes are maintained and retained is unknown. To answer these questions, we developed a transplant method for mitoso...

متن کامل

Microbes and microbial toxins: paradigms for microbial-mucosal interactions. VI. Entamoeba histolytica: parasite-host interactions.

The protozoan intestinal parasite Entamoeba histolytica remains a significant cause of morbidity and mortality worldwide. E. histolytica causes two major clinical syndromes, amebic colitis and amebic liver abscess. Recent advances in the development of in vitro and in vivo models of disease, new genetic approaches, the identification of key E. histolytica virulence factors, and the recognition ...

متن کامل

Entamoeba Histolytica Cysteine Proteinase 5 Binds Integrin on Colonic Cells and Stimulates Nfκb-mediated Pro-inflammatory Responses

Integrins are important mammalian receptors involved in normal cellular functions and the pathogenesis of inflammation and disease. Entamoeba histolytica is a protozoan parasite that colonizes the gut and in 10% of infected individuals causes amebic colitis and liver abscess resulting in 10 deaths/year. E. histolytica-induced host inflammatory responses are critical in the pathogenesis of the d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 285 50  شماره 

صفحات  -

تاریخ انتشار 2010